Self-Adjoint Extensions of Discrete Magnetic Schrödinger Operators

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self Adjoint Extensions of Phase and Time Operators

It is shown that any real and even function of the phase (time) operator has a self-adjoint extension and its relation to the general phase operator problem is analyzed. Typeset using REVTEX E-mail: [email protected] E-mail: [email protected] E-mail: [email protected]

متن کامل

Non-variational Approximation of Discrete Eigenvalues of Self-adjoint Operators

We establish sufficiency conditions in order to achieve approximation to discrete eigenvalues of self-adjoint operators in the second-order projection method suggested recently by Levitin and Shargorodsky, [15]. We find explicit estimates for the eigenvalue error and study in detail two concrete model examples. Our results show that, unlike the majority of the standard methods, second-order pro...

متن کامل

Self-adjoint Extensions of Restrictions

We provide, by a resolvent Krĕın-like formula, all selfadjoint extensions of the symmetric operator S obtained by restricting the self-adjoint operator A : D(A) ⊆ H → H to the dense, closed with respect to the graph norm, subspace N ⊂ D(A). Neither the knowledge of S∗ nor of the deficiency spaces of S is required. Typically A is a differential operator and N is the kernel of some trace (restric...

متن کامل

Singular Schrödinger Operators as Self-adjoint Extensions of N-entire Operators

We investigate the connections between Weyl–Titchmarsh– Kodaira theory for one-dimensional Schrödinger operators and the theory of n-entire operators. As our main result we find a necessary and sufficient condition for a one-dimensional Schrödinger operator to be nentire in terms of square integrability of derivatives (w.r.t. the spectral parameter) of the Weyl solution. We also show that this ...

متن کامل

Self-adjoint symmetry operators connected with the magnetic Heisenberg ring

In [1] we defined symmetry classes, commutation symmetries and symmetry operators in the Hilbert space H of the 1D spin-1/2 Heisenberg magnetic ring with N sites and investigated them by means of tools from the representation theory of symmetric groups SN such as decompositions of ideals of the group ring C[SN ], idempotents of C[SN ], discrete Fourier transforms of SN , Littlewood-Richardson p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales Henri Poincaré

سال: 2013

ISSN: 1424-0637,1424-0661

DOI: 10.1007/s00023-013-0261-9